NMR Spectroscopic Characterization of Charge Assisted Strong Hydrogen Bonds in Brønsted Acid Catalysis
نویسندگان
چکیده
Hydrogen bonding plays a crucial role in Brønsted acid catalysis. However, the hydrogen bond properties responsible for the activation of the substrate are still under debate. Here, we report an in depth study of the properties and geometries of the hydrogen bonds in (R)-TRIP imine complexes (TRIP: 3,3'-Bis(2,4,6-triisopropylphenyl)-1,1'-binaphthyl-2,2'-diylhydrogen phosphate). From NMR spectroscopic investigations 1H and 15N chemical shifts, a Steiner-Limbach correlation, a deuterium isotope effect as well as quantitative values of 1JNH,2hJPH and 3hJPN were used to determine atomic distances (rOH, rNH, rNO) and geometry information. Calculations at SCS-MP2/CBS//TPSS-D3/def2-SVP-level of theory provided potential surfaces, atomic distances and angles. In addition, scalar coupling constants were computed at TPSS-D3/IGLO-III. The combined experimental and theoretical data reveal mainly ion pair complexes providing strong hydrogen bonds with an asymmetric single well potential. The geometries of the hydrogen bonds are not affected by varying the steric or electronic properties of the aromatic imines. Hence, the strong hydrogen bond reduces the degree of freedom of the substrate and acts as a structural anchor in the (R)-TRIP imine complex.
منابع مشابه
Brønsted Acid Catalysis—Structural Preferences and Mobility in Imine/Phosphoric Acid Complexes
Despite the huge success of enantioselective Brønsted acid catalysis, experimental data about structures and activation modes of substrate/catalyst complexes in solution are very rare. Here, for the first time, detailed insights into the structures of imine/Brønsted acid catalyst complexes are presented on the basis of NMR data and underpinned by theoretical calculations. The chiral Brønsted ac...
متن کاملInductive Effect of Bioactive Intermolecular Hydrogen Bonding Complex of 1,2,4,5 –Tetrazine and Inorganic Acid by NMR and QTAIM
In this paper, NMR and QTAIM analysis for three substituted of T2SA complex was investigated in the gas and four solvents at DFT level. Intermolecular O–H…N hydrogen bonds between 1,2,4,5-Tetrazine and Sulphurous acids enhance the stability of complex.1,2,4,5-Tetrazine is a highly reactive diene for [4+2] inverse-Diels–Alder cycloaddition processes and an excellent precursor to attain the pyrid...
متن کامل(15)N and (1)H Solid-State NMR Investigation of a Canonical Low-Barrier Hydrogen-Bond Compound: 1,8-Bis(dimethylamino)naphthalene.
Strong or low-barrier hydrogen bonds have often been proposed in proteins to explain enzyme catalysis and proton-transfer reactions. So far (1)H chemical shifts and scalar couplings have been used as the main NMR spectroscopic signatures for strong H-bonds. In this work, we report simultaneous measurements of (15)N and (1)H chemical shifts and N-H bond lengths by solid-state NMR in (15)N-labele...
متن کاملCharacterization of the acid sites in MCM-41-type materials by spectroscopic and catalytic techniques
Temperature-programmed desorption of pyridine, FTIR and multinuclear NMR spectroscopy and catalytic test reaction have been applied to investigate acid sites in mesoporous materials with silicon/aluminum ratios of 266 and 20 and in an amorphous aluminosilicate with nSi/nAl=5.4. The results obtained by these methods indicate the presence of weak Brønsted acid sites in the aluminosilicate samples...
متن کاملRecent Advance of ‘Combined Acid’ Strategy for Asymmetric Catalysis
One possible way to take advantage of such abilities may be to apply a ‘combined acids system’ [2] to the catalyst design. The concept of combined acids, which can be classified into Brønsted acid-assisted Lewis acid (BLA), Lewis acid-assisted Lewis acid (LLA), Lewis acid-assisted Brønsted acid (LBA), and Brønsted acid-assisted Brønsted acid (BBA), can be a particularly useful tool for the desi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 138 شماره
صفحات -
تاریخ انتشار 2016